Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Joachim Pickardt,* Lars von Chrzanowski and Marina Borowski

Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany

Correspondence e-mail: pickardt@wap0201.chem.tu-berlin.de

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (S–C) = 0.004 Å R factor = 0.066 wR factor = 0.138 Data-to-parameter ratio = 31.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,2,4,6-Tetrathiacycloheptane

The title compound, $C_3H_6S_4$, is a cyclic polysulfane containing one disulfane S_2 group and two single S atoms bridged by three CH₂ groups, thus forming a seven-membered ring. The ring exhibits a chair conformation. Received 11 July 2006 Accepted 12 July 2006

Comment

The title compound, (I), was synthesized in the course of studies of metal complexes of polysulfides and related compounds (von Chrzanowski *et al.*, 2005; Steudel, 2002).

The molecule of (I) contains two sulfide and one disulfide groups, separated by CH_2 groups. The S1-S2 distance in the disulfide group is 2.028 (1) Å, which agrees well with the S-S distances found for other disulfides, *e.g.* in dibenzyldisulfide (2.02 Å; Lee & Bryant, 1969).

The S-C bonds between the disulfide S atoms and the neighbouring C atoms [S1-C3 = 1.829 (4) Å and S2-C1 1.827 (4) Å] are comparatively long, whereas the bonds between the isolated S atoms and the C atoms connected to the disulfide S atoms [S3-C1 = 1.798 (4) Å and S4-C3 = 1.798 (4) Å] are short, and the C-S distances for the CH₂ groups bridging the two single S atoms are S3-C2 = 1.816 (4) \text{ Å} and S4-C2 = 1.823 (4) \text{ Å}, which compare well with the C-S distances in thia-crown ethers, *e.g.* 1,4,7,10-tetrathiacyclododecane (1.806-1.825 \text{ Å}; Robinson & Sango-

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecule structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

organic papers

koya, 1988). The ring has a chair conformation, with atoms S1 and C2 forming the apices.

Experimental

The title compound was formed as a by-product of the synthesis of 1,2,4-trithiacyclopentane by reaction of sodium sulfide (0.83 mol of the nonahydrate) with sulfur (0.16 mol) in water (350 ml), stirring for 7 h, extraction with dichloromethane and evaporation of the solvent. A yellow oil resulted, from which colourless crystals of (I) crystallized within a week.

Crystal data

 $\begin{array}{l} C_{3}H_{6}S_{4} \\ M_{r} = 170.32 \\ \text{Monoclinic, } P_{1}/n \\ a = 11.1285 \ (4) \\ \dot{A} \\ b = 5.2653 \ (2) \\ \dot{A} \\ c = 11.7399 \ (4) \\ \dot{A} \\ \beta = 105.963 \ (1)^{\circ} \\ V = 661.37 \ (4) \\ \dot{A}^{3} \end{array}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans Absorption correction: none 5831 measured reflections Z = 4 D_x = 1.711 Mg m⁻³ Mo K α radiation μ = 1.31 mm⁻¹ T = 294 (2) K Prism, colourless 0.20 × 0.18 × 0.15 mm

2018 independent reflections 1622 reflections with $I > 2\sigma(I)$ $R_{int} = 0.090$ $\theta_{max} = 30.6^{\circ}$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0288P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.066$	+ 0.65P]
$wR(F^2) = 0.138$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.46	$(\Delta/\sigma)_{\rm max} < 0.001$
2018 reflections	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
64 parameters	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

H atoms were positioned geometrically, with C–H = 0.97 Å, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1996); software used to prepare material for publication: *SHELXL97*.

References

Brandenburg, K. (1996). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (1998). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chrzanowski, L. von (2005). PhD thesis, Technische Universität Berlin, Germany.
- Lee, J. D. & Bryant, M. W. R. (1969). Acta Cryst. B25, 2497-2504.
- Robinson, G. H. & Sangokoya, S. A. (1988). J. Am. Chem. Soc. 110, 1494–1497.Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Steudel, R. (2002). Chem. Rev. 102, 3905-3945.